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Explicit Examples of Conformal Invariance
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We study examples where conformal invariance implies rational critical indices, trivial-
ity of the underlying quantum field theory, and emergence of hypergeometric functions
as solutions of the field equations.

KEY WORDS: rational critical indices; triviality; conformal symmetry.

Conformal symmetry, although present in very few realistic systems that are
seen around in its exact form, has proved to be a very important symmetry in
physics. The pure Maxwell system was shown to be conformally invariant at the
start of the twentieth century (Bateman, 1910; Cunningham, 1909). The presence
of a mass term, say when an electron couples to this system, ruins this sym-
metry, though. Scaling arguments, of late 1960s, brought this symmetry back into
stage. Wilson (1969) laid the theoretical grounds whereas experimentally validated
Bjorken scaling laws (Bjorken, 1969) showed that these ideas have applications
in down-to-earth physics. Ever since then conformal symmetry, however badly
broken it is in real world, makes its appearance in different branches of physics.

In this note we want to give some examples, obtained from Lagrangian field
theory, for results derived by using more formal methods. These examples, when
properly reinterpreted, serve as illustrations for these phenomena. All these phe-
nomena may be found scattered in the literature. We think it is still worthwhile
to mention all these related phenomena, and the different signatures of conformal
symmetry in one paper.

We first want to focus on the relationship between rational critical indices and
the presence of conformal symmetry in a field theoretical model, a problem which
has been studied through several decades. A classical paper on this relation is the
one written by Friedan–Qui–Shenker (FQS) (Friedanet al., 1984) where it is shown
that the presence of conformal symmetry in statistical mechanical models forces
the critical indices for phase transitions to be rational numbers. The conformal
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symmetry was put to the model through the commutation relations obeyed by the
generators, the so-called Virasoro algebra and the calculation was dependent on
these commutations relations obeyed by the algebra. The models studied did not
have explicit lagrangians. The correspondence with lagrangian models was through
matching dimensions of known exactly solvable models. Here unitarity was the
forcing constraint resulting in the rational values for the critical indices. Whenc,
c being the coefficient of the central term in the Virasoro algebra, is greater than
unity, we get field theoretical models instead of the statistical mechanical ones. In
this case the unitarity condition does not impose new constraints; so, one gets a
continuous set of solutions.

Calculations made by Belavinet al. (1984), before the FQS paper appeared,
showed the occurrence of rational indices explicitly in their conformal invariant
models. The analysis, again, did not start with a lagrangian system. Both of these
papers were working in two dimensional Euclidean spaces.

It is well known that the conformal group is much richer in two dimensions
compared to higher dimensions. In two dimensions, it is infinite dimensional. When
the space has a Euclidean metric, any function that obeys the Cauchy–Riemann
equations is locally conformal invariant. If we use the definition of conformal
symmetry as used in general relativity, being the transformation that keeps the light-
cone invariant, we see that any metric in two dimensions can be put to this form
easily. We can find a transformation that sends our former metric to the same metric
times a function. This property is not true for higher dimensional metrics, though.

A stricker definition of conformal symmetry will be the one defined using
group theory. This definition coincides with the former one if the space is higher
than two dimensional. Here we take the conformal group as SO(d, 2), whered is
the dimension of space–time. The transformation is expressed as the full Poincar´e
group, plus scaling transformations wherexµ goes toλxµ, hereλ is a constant,
and special conformal transformations, where

xµ→ xµ − bµx2

1− 2bx+ b2x2
. (1)

The group has

(d + 2)(d + 1)

2
(2)

parameters wherex2 = xµxµ, bx = bµxµ. The special conformal transformations
are generated by

Rµ = Pµ + I Pµ I (3)

wherePµ is the generator of translations and I, the inversion, takesx to −x
x2 . The

inversion is not a part of the connected part of the conformal group, except for free
theories.
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It will be of interest if the relationship between the rationality of the critical
indices and the presence of conformal symmetry persists in higher dimensions as
well. Schroer and Swieca studied the presence of global conformal symmetry in
field theory in 1974 (Schroeret al., 1975; Schroer and Swieca, 1974). Using their
result, we see that the conformal blocks of Belavin–Polyakov–Zamolodchikov are
not local fields, but local fields can be constructed out of them by summing over
blocks (Schroer, 2000a). It was shown earlier (Horta¸csuet al., 1972), that global
conformal invariance is absent in a local field theoretical model unless the two-point
function can be written as (x − x′)−2n wheren is a positive integer. In this paper two
exactly solvable interacting models, as well as free fields were studied. The essence
of the argument is the fact thatRµ generates a kind of conformal “time” rotations
(Schroer, 2000a), and maps spacelike distances into timelike distances. Unless the
two point function has support only on the light-cone, which is the case only when
n is an integer, the special conformal transformation violates causality and the
Wightman functions, therefore the whole theory is not invariant under conformal
transformations. Whenn is an integer, we get a theory which is unitarily equivalent
to a theory which is made out of product of free fields (Wightman, 1967).

Back in 1970s, G¨ursey and Orfanidis (1973) gave all the representations of the
group SO(2, 2), the conformal group in two dimensions in the stricker sense. They
showed that global conformal invariance exists only when one uses the analytic
series out of all possible ones. The analytic series for SO(2, 2) were related to
nontrivial interacting field theorieswith two-point functions with integer powers,
giving explicit examples of the presence of global conformal invariance in two
models (Horta¸csu, 1973a), the Thirring and the derivative coupling models. It was
shown that the representations of SO(2, 2) allowing such a symmetry correspond
to discrete values of the coupling constant and spin, those values that will give
two point functions with integer powers. The Klaiber solution (Klaiber, 1968) to
the Thirring model uses two constants that are functions of the coupling constant
g and spins. Since the model is in two dimensions, spin does not have a physical
meaning and, in principle, can take any value. When spin is equal to one half, as
is the case for any truespinor, it is not possible to satisfy conformal invariance.
Only for anomalous values of the spin value, conformal invariance can exist for
certain discrete values of the coupling constant.

Here what is meant bynontrivial field theoriesis just a theory whose coupling
constant is not zero. The catch is on deciding whether a Lagrangian theory which
exhibits a Feynman series expansion isactually nontrivial. We know from the
example of theφ4 theory (Baker and Kincaid, 1979, 1981) that the presence of
an interaction term in the Lagrangian form of the theory does not necessary mean
that the theory is nottrivial .

It should be recalled that in recent literature in Minkowski space, it is shown
that conformal invariance may result in “trivial” theories (Schroer, 2001). Schroer
has shown recently (Schroer, 2000b) that conformal invariance, realized in



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp777-ijtp-461701 April 1, 2003 17:57 Style file version May 30th, 2002

52 Horta çsu

Minkowski space, does not allow a particle interpretation unless one has a free field
theory. One is led to a trivial theory by the vanishing of the LSZ limit (Pohlmeyer,
(1969); Bucholz and Fredenhagen, 1977). Schroer also comments on (Schroer,
2000b) how the presence of conformal symmetry maps the long and short dis-
tances behavior into each other, resulting in the coalescing of these two points.
All multiparticle thresholds collapse on top of each other resulting in anomalous
dimensions. In the presence of anomalous dimensions, the LSZ limit vanishes,
resulting in the loss of particle interpretation. These facts necessitate further con-
crete calculations to check whethertrue nonfree behavioris present using models
which are conformal invariant.

There were attempts to carry out calculations for the electron–positron anni-
hilation and electroproduction processes, using Thirring model, which exhibits
conformal invariance, as the fundamental model describing these interactions
(Hortaçsu, 1973b). The results were inconclusive, though. In the former case the
cross-section was found to be proportional to a power of the transferred momenta.
In the latter case the presence of generalized hypergeometric functions (Appell and
Kampé de Fériet, 1926; Humbert, 1920–21) made a clear interpretation not pos-
sible. Thus we could not check whether these processes, based on this conformal
invariant model, gave results different from the free field case.

Calculations made a little later, however, showed explicitly how conformal
symmetry leads to a trivial theory. There were attempts to regularize conformal
invariant models ind = 4 by unconventional models (Akdenizet al., 1982, 1983;
Arik et al., 1985). These models were shown to give rise to trivial theories (Arik
and Horta¸csu, 1983; Horta¸csu, 1994) in the sense that physical processes, calcu-
lated using such models, gave the free field result. In this reference, two physical
processes, electron–positron annihilation and the quark–electron structure func-
tions were calculated using the 1/N expansion. Calculations were carried up to
three loops, consistent with the 1/N expansion. The end result was exactly the one
given by the free quark model. In the annihilation cross-section, the one loop is
the free quark result. The higher loop contributions cancelled one another, ending
up with the free quark result. In the latter case, only the lowest order tree diagram
remained, all the diagrams with loops cancelling each other. The model scaled
exactly in both of the processes studied. The logarithmic corrections of QCD were
lacking. In this sense this result confirms Schroer’s ideas about the triviality of
field theoretical models possessing conformal symmetry. The presence of confor-
mal symmetry in the model results in a free field theory, at best a generalized free
field theory which is formed by the powers of free fields (Wightman, 1967).

Schroer (2000d; Rehren, 2000) thinks that, if one starts with AdS space,
instead of the Minkowski, there may be a way out. The zero component of the
generator of special conformal transformations,R0, may act as the Hamiltonian in
the new space. At this point we want to remark on examples using models based
on the AdS spaces.
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Recently there were papers on models where critical behavior was studied
for the emergence of black holes by the presence of scalar fields. For amplitudes
of scalar fields which are less than a critical value, no black hole exists. As the
amplitude of the scalar field increases, there is a certain value beyond which we
find a black hole which swallows the scalar field. Such models show what is called
Choptuik scaling (Choptuik, 1993). During last years the BTZ black hole (B˜anados
et al., 1992,1993) and the closely related AdS models were studied in the presence
of a scalar field. Two sets of results exist. When one takes a theory built around ei-
ther the BTZ black hole (Birmingham, 2001; Birminghamet al., 2001) or the AdS
solution (Kim and Oh, 2001), one gets a fraction, actually just 1/2 for the critical
index for black hole formation. We know that thed = 3 AdS solution is dual to a
conformal invariant model ind = 2 [Maldecena conjecture] (Gubseret al., 1998;
Maldacena, 1998; Witten, 1998). We also know that the BTZ black hole is related
to a conformal invariant model (Horowitz and Welch, 1993; Kaloper, 1993). When
the same model, with the scalar field present from the beginning, is studied numer-
ically, though, i.e., when one is not expanding around one of these two limiting
cases, which takes the scalar field vanishing, one gets a nonrational value for the
same index (Burko, 2000; Garfinkle, 2001; Husain and Oliver, 2001; Pretorius and
Choptuik, 2000). Since the index is calculated using numerical methods, one may
not be sure if it can still be written as a rational number. At least it is certain that it
is not equal to 1/2, like the numbers obtained in mean field theory calculations for
critical indices. Just note that mean field theory calculations are independent of
any dimensions. Mean field theory always has a Gaussian fixed point which may
be considered as one of the zeroes of the beta function of the related field theory
where one obtains exact conformal symmetry.

In the cases when the model can be related to the conformal symmetric theo-
ries, the hypergeometric function, the signature of conformal symmetry emerges
as the solution of the problem. The presence of this function is another signature
of “conformal invariance,” just as “rational indices.” We see the same function
whether we study fluctuations in the background field of an instanton for the
Yang–Mills theory (t’Hooft, 1976), or try to solve the Seiberg and Witten (1994)
relations using differential equations (Bilal, 1996; Flohr, 1998). In the former case,
if we do not bring inr dependent regulators, as t’Hooft does (t’Hooft, 1976), but
insert only mass terms, as it is usually done, one breaks the symmetry and loses
the hypergeometric functions. We may also encounter the hypergeometric func-
tions while solving critical indices for BTZ solution (B˜anadoset al., 1992,1993)
or for statistical models, not mentioning finding their hyperforms when we have
more than one relevant variable (Appell and Kamp´e de Fériet, 1926; Humbert,
1920–21).

As a last example we give the emergence of this function if one expands
around the exact solution for a metric in three dimensions. If one starts from a
three-dimensional metric of the form (Pretorius and Choptuik, 2000).
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ds2 = e2A(r )

cos2(r )
(dr2− dt2)+ tan2(r ) e2B(r ) dθ2, (4)

which describes an AdS or BTZ solution depending on the solution one uses for
the functionsA andB. An exact solution, describing the AdS solution is given by
(Birkandan and Horta¸csu, 2001; Pretorius and Choptuik, 2000)

A = − log(sin(r )), (5)

B = log

(
cos(2r )

2 sin2(r )

)
. (6)

If one expands the functionsA andB in a power series

A = A0+ εA1+ · · · , (7)

B = B0+ εB1+ · · · , (8)

using the zeroth-order solutions as the one given above, one finds

A1
,rr −

8A1

sin2(2r )
= 0 (9)

which can be reduced to an equation of the hypergeometric type (Birkandan and
Hortaçsu, 2001). A simple calculation shows that the solutions can be written in
terms of hypergeometric functions,

sin−1(2r )×2 F1
(− 1/2,−1/2| − 1/2| sin2(2r )

)
(10)

for one solution, and

sin2(2r )×2 F1
(
1, 1|5/2| sin2(2r )

)
(11)

for the other. In this example, too, we see the mark of conformal symmetry, the
hypergeometric functions.

In this note we gave examples of models exhibiting conformal invariance.
If one signature of this symmetry is rational critical indices, the other one is the
emergence of the hypergeometric functions, simple or hyper ones, in the solutions.
As shown in literature (Pretorius and Choptuik, 2000; t’Hooft, 1976), when the
symmetry is broken explicitly, therational indicesor thehypergeometric solutions
are not present anymore. It is an open question, whether one can still construct
nontrivial modelswithin Lagrangian QFT or this can be done solely using the
paraphernalia ofAlgebraic Quantum Field Theory.
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Schroer, B. (2000d).Physics Letters B494, 124.Preprint, hep-th/0005134.
Schroer, B. (2001).Physics Letters B506, 337.
Schroer, B. and Swieca, J. A. (1974).Physical Review D10, 480.
Schroer, B., Swieca, J. A., and Volkel, A. H. (1975).Physical Review D11, 11.
Seiberg, N. and Witten, E. (1994).Nuclear Physics B426, 19.
t’Hooft, G. (1976).Physical Review D14, 3432.
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